| Spatial domain | Global |
| Spatial resolution | 0.25 degrees (~20km) |
| Time domain | 2021-05-01 00:00:00 UTC to Present |
| Time resolution | 1 hour |
⎘
The Global Forecast System (GFS) is a National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Prediction (NCEP) weather forecast model that generates data for dozens of atmospheric and land-soil variables, including temperatures, winds, precipitation, soil moisture, and atmospheric ozone concentration. The system couples four separate models (atmosphere, ocean model, land/soil model, and sea ice) that work together to depict weather conditions.
This analysis dataset is an archive of the model's best estimate of past weather. It is created by concatenating the first few hours of each historical forecast to provide a dataset with dimensions time, latitude, and longitude.
| Open notebook in github | |
| Open notebook in colab | |
| Icechunk example usage notebook *** |
***: Icechunk examples are pre-release for feedback. Subscribe to our newsletter to be notified about two small breaking changes that we will implement:
import xarray as xr # xarray>=2025.1.2 and zarr>=3.0.8 for zarr v3 support
ds = xr.open_zarr("https://data.dynamical.org/noaa/gfs/analysis/latest.zarr")
ds["temperature_2m"].sel(time="2026-01-01T00", latitude=0, longitude=0).compute()
| min | max | units | |
|---|---|---|---|
| latitude | -90 | 90 | degree_north |
| longitude | -180 | 179.75 | degree_east |
| time | 2021-05-01T00:00:00 | Present | seconds since 1970-01-01 |
| units | dimensions | |
|---|---|---|
| categorical_freezing_rain_surface | 1 | time × latitude × longitude |
| categorical_ice_pellets_surface | 1 | time × latitude × longitude |
| categorical_rain_surface | 1 | time × latitude × longitude |
| categorical_snow_surface | 1 | time × latitude × longitude |
| downward_long_wave_radiation_flux_surface | W m-2 | time × latitude × longitude |
| downward_short_wave_radiation_flux_surface | W m-2 | time × latitude × longitude |
| geopotential_height_cloud_ceiling | m | time × latitude × longitude |
| maximum_temperature_2m | degree_Celsius | time × latitude × longitude |
| minimum_temperature_2m | degree_Celsius | time × latitude × longitude |
| percent_frozen_precipitation_surface | percent | time × latitude × longitude |
| precipitable_water_atmosphere | kg m-2 | time × latitude × longitude |
| precipitation_surface | kg m-2 s-1 | time × latitude × longitude |
| pressure_reduced_to_mean_sea_level | Pa | time × latitude × longitude |
| pressure_surface | Pa | time × latitude × longitude |
| relative_humidity_2m | percent | time × latitude × longitude |
| temperature_2m | degree_Celsius | time × latitude × longitude |
| total_cloud_cover_atmosphere | percent | time × latitude × longitude |
| wind_u_100m | m s-1 | time × latitude × longitude |
| wind_u_10m | m s-1 | time × latitude × longitude |
| wind_v_100m | m s-1 | time × latitude × longitude |
| wind_v_10m | m s-1 | time × latitude × longitude |
Dataset licensed under CC BY 4.0.
Attribution can be found in the dataset's metadata, e.g. ds.attrs["attribution"].
GFS starts a new model run every 6 hours and dynamical.org has created this analysis by concatenating the first 6 hours of each forecast along the time dimension.
Storage for this dataset is generously provided by Source Cooperative, a Radiant Earth initiative. Icechunk storage generously provided by AWS Open Data.
The data values in this dataset have been rounded in their binary floating point representation to improve compression. See Klöwer et al. 2021 for more information on this approach. The exact number of rounded bits can be found in our reformatting code.
This dataset replaces the deprecated NOAA GFS analysis, hourly dataset. This dataset provides more variables and live updates and NOAA GEFS analysis provides a much longer historical record.