Spatial domain | Global |
Spatial resolution | 0.25 degrees (~20km) |
Time domain | Forecasts initialized 2021-05-01 00:00:00 UTC to Present |
Time resolution | Forecasts initialized every 6 hours |
Forecast domain | Forecast lead time 0-384 hours (0-16 days) ahead |
Forecast resolution | Forecast step 0-120 hours: hourly, 123-384 hours: 3 hourly |
β
The Global Forecast System (GFS) is a National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Prediction (NCEP) weather forecast model that generates data for dozens of atmospheric and land-soil variables, including temperatures, winds, precipitation, soil moisture, and atmospheric ozone concentration. The system couples four separate models (atmosphere, ocean model, land/soil model, and sea ice) that work together to depict weather conditions.
This dataset is an archive of past and present GFS forecasts. Forecasts
are identified by an initialization time (init_time
) denoting the
start time of the model run. Each forecast steps forward in time along the
lead_time
dimension.
Open notebook in github | Open notebook in colab |
import xarray as xr # xarray>=2025.1.2 and zarr>=3.0.4 for zarr v3 support
ds = xr.open_zarr("https://data.dynamical.org/noaa/gfs/forecast/[email protected]")
ds['temperature_2m'].sel(init_time="2025-01-01T00", latitude=0, longitude=0).max().compute()
min | max | units | |
---|---|---|---|
init_time | 2021-05-01T00:00:00 | Present | seconds since 1970-01-01 |
latitude | -90 | 90 | degrees_north |
lead_time | 0 days 00:00:00 | 16 days 00:00:00 | seconds |
longitude | -180 | 179.75 | degrees_east |
units | dimensions | |
---|---|---|
categorical_freezing_rain_surface | 0=no; 1=yes | init_time Γ lead_time Γ latitude Γ longitude |
categorical_ice_pellets_surface | 0=no; 1=yes | init_time Γ lead_time Γ latitude Γ longitude |
categorical_rain_surface | 0=no; 1=yes | init_time Γ lead_time Γ latitude Γ longitude |
categorical_snow_surface | 0=no; 1=yes | init_time Γ lead_time Γ latitude Γ longitude |
downward_long_wave_radiation_flux_surface | W/(m^2) | init_time Γ lead_time Γ latitude Γ longitude |
downward_short_wave_radiation_flux_surface | W/(m^2) | init_time Γ lead_time Γ latitude Γ longitude |
expected_forecast_length | seconds | init_time |
geopotential_height_cloud_ceiling | gpm | init_time Γ lead_time Γ latitude Γ longitude |
ingested_forecast_length | seconds | init_time |
maximum_temperature_2m | C | init_time Γ lead_time Γ latitude Γ longitude |
minimum_temperature_2m | C | init_time Γ lead_time Γ latitude Γ longitude |
percent_frozen_precipitation_surface | % | init_time Γ lead_time Γ latitude Γ longitude |
precipitable_water_atmosphere | kg/(m^2) | init_time Γ lead_time Γ latitude Γ longitude |
precipitation_surface | mm/s | init_time Γ lead_time Γ latitude Γ longitude |
pressure_reduced_to_mean_sea_level | Pa | init_time Γ lead_time Γ latitude Γ longitude |
pressure_surface | Pa | init_time Γ lead_time Γ latitude Γ longitude |
relative_humidity_2m | % | init_time Γ lead_time Γ latitude Γ longitude |
temperature_2m | C | init_time Γ lead_time Γ latitude Γ longitude |
total_cloud_cover_atmosphere | % | init_time Γ lead_time Γ latitude Γ longitude |
valid_time | seconds since 1970-01-01 | init_time Γ lead_time |
wind_u_100m | m/s | init_time Γ lead_time Γ latitude Γ longitude |
wind_u_10m | m/s | init_time Γ lead_time Γ latitude Γ longitude |
wind_v_100m | m/s | init_time Γ lead_time Γ latitude Γ longitude |
wind_v_10m | m/s | init_time Γ lead_time Γ latitude Γ longitude |
Storage for this dataset is generously provided by Source Cooperative, a Radiant Earth initiative.
The data values in this dataset have been rounded in their binary floating point representation to improve compression. See KlΓΆwer et al. 2021 for more information on this approach. The exact number of rounded bits can be found in our reformatting code.