NOAA GEFS forecast, 35 day

updating
Spatial domain Global
Spatial resolution 0-240 hours: 0.25 degrees (~20km), 243-840 hours: 0.5 degrees (~40km)
Time domain Forecasts initialized 2020-10-01 00:00:00 UTC to Present
Time resolution Forecasts initialized every 24 hours.
Forecast domain Forecast lead time 0-840 hours (0-35 days) ahead
Forecast resolution Forecast step 0-240 hours: 3 hourly, 243-840 hours: 6 hourly

* Email optional. Providing your email as a query param helps us understand usage and impact to keep dynamical.org supported for the long-term. For catalog updates follow here.

The Global Ensemble Forecast System (GEFS) is a National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Prediction (NCEP) weather forecast model. GEFS creates 31 separate forecasts (ensemble members) to describe the range of forecast uncertainty.

This dataset is an archive of past and present GEFS forecasts. Forecasts are identified by an initialization time (init_time) denoting the start time of the model run as well as by the ensemble_member. Each forecast has a 3 hourly forecast step along the lead_time dimension. This dataset contains only the 00 hour UTC initialization times which produce the full length, 35 day forecast.

Storage for this dataset is generously provided by Source Cooperative, a Radiant Earth initiative.

Dimensions

min max units
ensemble_member 0 30 realization
init_time 2020-10-01T00:00:00 Present seconds since 1970-01-01
latitude -90 90 degrees_north
lead_time 0 days 00:00:00 35 days 00:00:00 seconds
longitude -180 179.75 degrees_east

Variables

units dimensions
categorical_freezing_rain_surface 0=no; 1=yes init_time × ensemble_member × lead_time × latitude × longitude
categorical_ice_pellets_surface 0=no; 1=yes init_time × ensemble_member × lead_time × latitude × longitude
categorical_rain_surface 0=no; 1=yes init_time × ensemble_member × lead_time × latitude × longitude
categorical_snow_surface 0=no; 1=yes init_time × ensemble_member × lead_time × latitude × longitude
downward_long_wave_radiation_flux_surface W/(m^2) init_time × ensemble_member × lead_time × latitude × longitude
downward_short_wave_radiation_flux_surface W/(m^2) init_time × ensemble_member × lead_time × latitude × longitude
expected_forecast_length seconds init_time
geopotential_height_cloud_ceiling gpm init_time × ensemble_member × lead_time × latitude × longitude
ingested_forecast_length seconds init_time × ensemble_member
maximum_temperature_2m C init_time × ensemble_member × lead_time × latitude × longitude
minimum_temperature_2m C init_time × ensemble_member × lead_time × latitude × longitude
percent_frozen_precipitation_surface % init_time × ensemble_member × lead_time × latitude × longitude
precipitable_water_atmosphere kg/(m^2) init_time × ensemble_member × lead_time × latitude × longitude
precipitation_surface mm/s init_time × ensemble_member × lead_time × latitude × longitude
pressure_reduced_to_mean_sea_level Pa init_time × ensemble_member × lead_time × latitude × longitude
pressure_surface Pa init_time × ensemble_member × lead_time × latitude × longitude
relative_humidity_2m % init_time × ensemble_member × lead_time × latitude × longitude
temperature_2m C init_time × ensemble_member × lead_time × latitude × longitude
total_cloud_cover_atmosphere % init_time × ensemble_member × lead_time × latitude × longitude
valid_time seconds since 1970-01-01 init_time × lead_time
wind_u_100m m/s init_time × ensemble_member × lead_time × latitude × longitude
wind_u_10m m/s init_time × ensemble_member × lead_time × latitude × longitude
wind_v_100m m/s init_time × ensemble_member × lead_time × latitude × longitude
wind_v_10m m/s init_time × ensemble_member × lead_time × latitude × longitude

Don't see what you're looking for? Let us know at [email protected].

Examples

Open notebook in github
Open notebook in colab
dynamical.org - NOAA GEFS forecast, 35 day
Maximum temperature in ensemble forecast
import xarray as xr  # xarray>=2025.1.2 and zarr>=3.0.4 for zarr v3 support

ds = xr.open_zarr("https://data.dynamical.org/noaa/gefs/forecast-35-day/[email protected]")
ds['temperature_2m'].sel(init_time="2025-01-01T00", latitude=0, longitude=0).max().compute()

Details

The data values in this dataset have been rounded in their binary floating point representation to improve compression. See Klöwer et al. 2021 for more information on this approach. The exact number of rounded bits can be found in our reformatting code.

The source data is available at both 0.25-degree and 0.5-degree resolutions. All variables—except where noted, including the 100m wind components—are derived from a 0.25-degree grid for the first 240 hours of each forecast and from a 0.5-degree grid for the remainder. Bilinear interpolation is used to convert 0.5-degree data to a 0.25-degree grid. The original 0.5-degree values can be retrieved by selecting every other pixel starting from offset 0 in both the latitude and longitude dimensions (e.g. array[::2, ::2]).